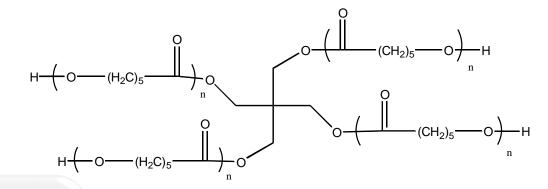


Everywhere you need us


Capa™ Polyols

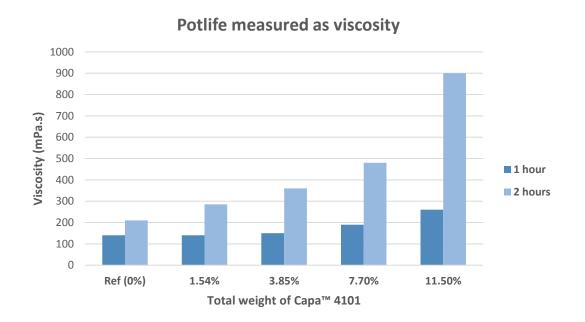
- A range of aliphatic polyester polyols produced in Warrington, UK.
- Products for a whole range of polyurethane applications.
- Main characteristics:
 - Low viscosity
 - Solvent free
 - Excellent hydrolysis resistance
 - Excellent mechanical properties

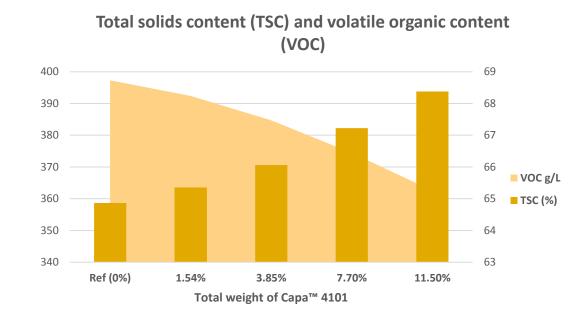
Capa™ 4101

- Polycaprolactone based polyester polyol
- OH number 218 mg/KOH (6.8% OHV)
- Tetrafunctional with equivalent weight of 250

- > Lowers VOC.
- > Improves impact resistance.
- > Improves abrasion resistance.
- > Improves chemical resistance.

Formulation approach

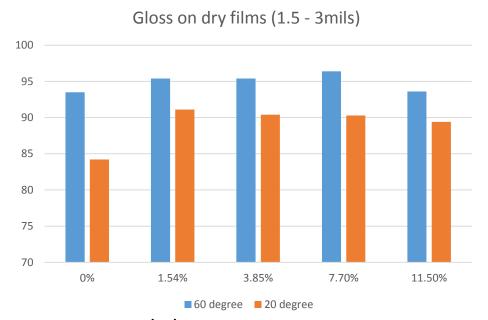

- Start with a high performance acrylic system.
- Solvent added to reach spray viscosity
- Increasing % weight of Capa™ 4101

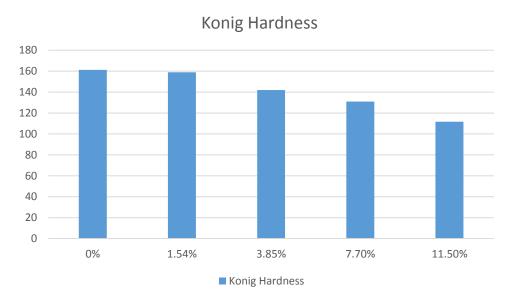

Item	Supplier	Grind Part	
		Parts	
SM2810/75	Allnex	35.68	
Butyl Acetate		30.5	
TiPure R960	Chemours	18.38	
Tinuvin 1130	BASF	0.32	
Tinuvin 292	BASF	0.32	
DynoAdd F1	Dynoadd	0.54	
DBTN Cat. 10% in BA		0.54	
Incozol 2	Incorez	2.16	
Totals:		88.44	

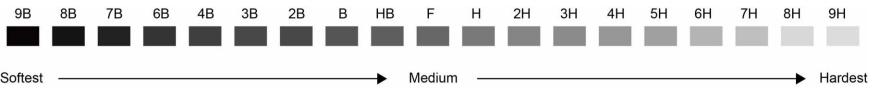
Let down		Reference 0%	1.54% w/w Capa™ 4101	3.85% w/w Capa™ 4101	7.70% w/w Capa™ 4101	11.6% w/w Capa™ 4101
	Supplier	Parts	Parts	Parts	Parts	Parts
Additional 2810/75	Allnex	11.56	10.02	7.71	3.86	0
Capa™ 4101	Perstorp	0	1.54	3.85	7.7	11.56
Total Parts Part A		100	100	100	100	100
HDT LV2	Vencorex	21.8	22.37	23.26	24.72	26.19
NCO/OH		1.05	1.05	1.05	1.05	
Total Weight		121.8	122.37	123.26	124.72	126.19

^{*}Spray viscosity at 100mPa.s

Pre-applied Lowers VOC

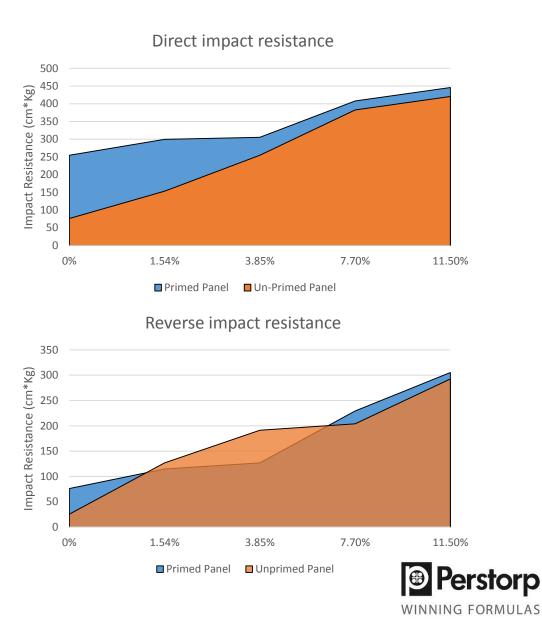



- Minimal impact on pot life in the lower percentages.
- Increased solids content/lowered VOC at spray viscosity.


Initial Appearance

- Improved gloss.
- Increase in pencil hardness.
- Reduction in Konig Hardness.

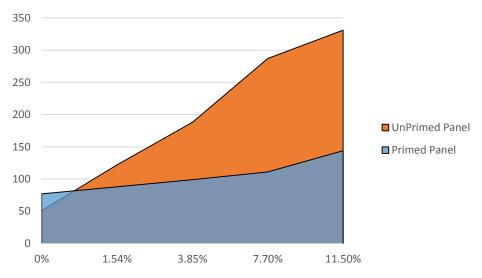
Pencil Hardness #52 rod on un-primed Q-Panels					
(173 gram standard weight applied to stylus with pencil. Tested in duplicate)					
Panel A	НВ	НВ	F	2H	3H
Panel B	НВ	НВ	F	2H	3H



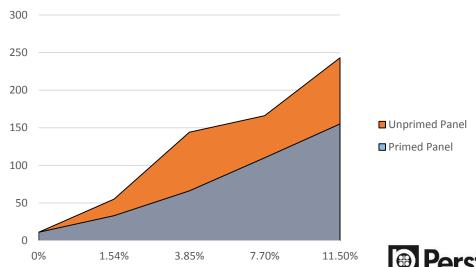
Mechanical Properties Improved Impact Resistance

 Significant increase in impact resistance.

Improved impact resistance with and without primer.

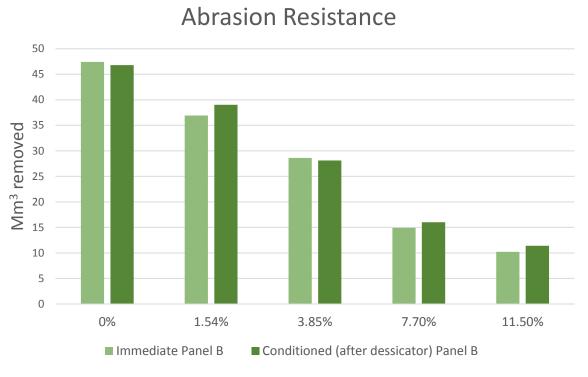

Mechanical Properties Improves Impact Resistance

■ Impact resistance tested at -10°C


Primed vs unprimed trend reversed

 Similar linear improvement of impact resistance

Direct Impact Resistance on -10°C Panels


Reverse Impact Resistance on -10°C Panels

Mechanical Properties

Improves Abrasion Resistance

- CS17 wheels/ 1000 gram weight/ 1000 cycles
- Panels primed and coated with #52 rod topcoat deposition. –
- Sample panels conditioned 24 hours in dessicator prior to abrasion testing.
- MG loss results recorded immediately after test completion and after 24 hours re-conditioning in dessicator.
- Each system tested in duplicate. Results reported in mg loss/1000 cycles

Chemical Resistance

- Incremental improvement in chemical resistance
- MEK resistance after 300 double rubs
- Acrylic initial performance is good

MEK Double Rubs on Primed Q-Panels						
	0	1.54%	3.85%	7.70%	11.50%	
Primed Panel 300 double rubs	Mars with degloss	Slight Mar with slight degloss	No Effect	No Effect	No Effect	

12 Hour Exposure- Observations immediately after removal of chemicals						
	0	1.54%	3.85%	7.70%	11.50%	
Glacial Acetic Acid	Destroyed	Destroyed	Destroyed	Destroyed	Destroyed	
Skydrol LD-4	Slight Mark					
Purell Hand Cleaner	No Affect					
60:40 Gasoline/Toluene mix	Slight Mark					
De-Icer (Methanol/ Ethylene Glycol Mix)	Slight Mark	No Affect	No Affect	No Affect	No Affect	
Synthetic Brake Fluid	Degloss	Slight Degloss	Slight Degloss	Slight Degloss	Slight Degloss	
Automatic Transmission Fluid	No Affect					
Synthetic Gear Oil (Grade 460)	Slight Degloss	Slight Mark	No Affect	Slight Mark	Slight Mark	

Conclusions Capa™ 4101

- Branched aliphatic polyester polyol.
- Reactive diluent and resin modifier.
- Functionality 4.0
 - Reduces solvent demand
 - Improves impact resistance
 - Improves abrasion resistance
 - Improves chemical resistance
- Begin to optimise coating properties with as little as 2-4% addition rate.
- Many thanks to Habbco Industries LLC, MA

